Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes.

نویسندگان

  • S Curry
  • L Ciuffetti
  • M Hyman
چکیده

The growth of a filamentous fungus, a Graphium sp., on n-alkanes (C(inf2) to C(inf4)) was inhibited by low concentrations of acetylene, propyne, 1-butyne, ethylene, and propylene. Acetylene and other unsaturated hydrocarbons had no effect on the growth of the Graphium sp. on potato dextrose broth, ethanol, or acetate. Our results suggest that n-alkynes and n-alkenes are selective inhibitors of a nonspecific monooxygenase enzyme responsible for the initial oxidation of n-alkanes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp.

The filamentous fungus Graphium sp. (ATCC 58400) grows on gaseous n-alkanes and diethyl ether. n-Alkane-grown mycelia of this strain also cometabolically oxidize the gasoline oxygenate methyl tert-butyl ether (MTBE). In this study, we characterized the ability of this fungus to metabolize and cometabolize a range of cyclic ethers, including tetrahydrofuran (THF) and 1,4-dioxane (14D). This stra...

متن کامل

Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp.

In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar...

متن کامل

Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxi...

متن کامل

Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.

Cell-free particulate fractions derived from methylotrophic bacteria catalyze the oxygen- and reduced nicotinamide adenine dinucleotide-dependent epoxidation of alkenes and hydroxylation of alkanes. Evidence presented indicates that the hydroxylation and epoxidation reactions are catalyzed by the same or a similar metal-containing monooxygenase.

متن کامل

Mn-Metal Organic Framework as Heterogenous Catalyst for Oxidation of Alkanes and Alkenes

Manganese metal-organic framework (Mn-MOF) containing Mn2+ ions, benzenetricarboxylic acid (BTC) and N,N-dimethylformamid (DMF) was prepared and used as catalyst for oxidation of alkenes such as 1,1-diphenylethylene, trans-stilbene, cyclohexene, norbornene, styrene and cyclooctene to epoxides with 33-92% conversion and 75-100% selectivity and oxidation of alkanes such as fluorene, adamantane, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 6  شماره 

صفحات  -

تاریخ انتشار 1996